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Abstract. It has been demonstrated that magnetocrystalline anisotropies in
(Ga,Mn)As are sensitive to lattice strains as small as 10−4 and that strain can
be controlled by lattice parameter engineering during growth, through post-
growth lithography, and electrically by bonding the (Ga,Mn)As sample to a
piezoelectric transducer (PZT). In this work, we show that analogous effects are
observed in crystalline components of the anisotropic magnetoresistance (AMR).
Lithographically or electrically induced strain variations can produce crystalline
AMR components which are larger than the crystalline AMR and a significant
fraction of the total AMR of the unprocessed (Ga,Mn)As material. In these
experiments, we also observe new higher order terms in the phenomenological
AMR expressions which were previously unnoticed in (Ga,Mn)As. It is
demonstrated that strain variation effects can play an important role in the
magnetotransport characteristics of (Ga,Mn)As lateral nanoconstrictions.

5 Author to whom any correspondence should be addressed.

New Journal of Physics 10 (2008) 065003
1367-2630/08/065003+17$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:ed299@cam.ac.uk
http://www.njp.org/


2

Contents

1. Introduction 2
2. Phenomenological description of the AMR 3
3. Experiments in lithographically patterned (Ga,Mn)As microdevices 4
4. Experiments in (Ga,Mn)As/piezo-transducer hybrid structures 9
5. Conclusions 11
Acknowledgments 11
Appendix A. Derivation of phenomenological AMR expressions 12
Appendix B. Definitions of transport anisotropy constants 14
References 16

1. Introduction

GaAs doped with ∼1–10% of the magnetic acceptor Mn is a unique material for
exploring spin–orbit coupling effects on micromagnetic and magnetotransport characteristics of
ferromagnetic spintronic devices. Spin-polarized valence band holes that mediate ferromagnetic
coupling between Mn local moments, produce large magnetic stiffness, resulting in a mean
field-like magnetization and macroscopic single-domain behavior of these dilute moment
ferromagnets. At the same time, magnetocrystalline anisotropies derived from spin–orbit
coupling effects in the hole valence bands are large, leading to the sensitivity of the magnetic
state to strains as small as 10−4 [1]–[5]. Experimentally, strain effects can be controlled by
lattice parameter engineering during growth [6, 7] and through post-growth lithography [1]–[3].
Electrical control is achieved by bonding a piezoelectric transducer (PZT), e.g. the lead
zirconate titanate, to the (Ga,Mn)As sample [4, 5, 8], in analogy with previous experiments
in metal ferromagnets [9]–[12]. Easy axis rotations from the in-plane to out-of-plane directions
have been demonstrated in these studies in (Ga,Mn)As films grown under compressive and
tensile lattice matching strains, and the orientation of the in-plane easy axis (axes) has been
shown to respond to strain relaxation in lateral microstructures or controlled electrically by the
piezo-stressors.

Strain control of magnetocrystalline effects on transport in (Ga,Mn)As, which we focus
on in this paper, has so far been explored less extensively. It has been reported that symmetries
lowered by the growth lattice-mismatch strain [13]–[15] or on high-index surfaces [16] induce
additional anisotropic magneto resistance (AMR) contributions in (Ga,Mn)As, similar to other
magnetic materials [17, 18]. These theoretical and experimental studies have shown that the
magnetotransport coefficients can be large and reflect the rich magnetocrystalline anisotropies
of the studied (Ga,Mn)As materials [13, 15, 16], [19]–[24].

In this paper, we demonstrate that the post-growth strain manipulation procedures can also
significantly change the AMR in (Ga,Mn)As. We report and analyze AMR measurements in
strain-relaxed (Ga,Mn)As micro and nanostructures, and in a (Ga,Mn)As film bonded to a
PZT. The resulting lattice distortions strongly modify crystalline AMR terms and give rise
to new, previously undetected components in phenomenological AMR expansions applied to
(Ga,Mn)As. The methods to control AMR after growth described here are much more flexible
than the growth techniques used previously. They allow for a continuous tuning of the strain
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effects on AMR with all other material parameters fixed and, therefore, a very systematic
exploration of the AMR phenomenology and microscopic origins in (Ga,Mn)As.

The present paper is organized as follows: an extension of the phenomenological symmetry
analysis of Döring [25] is given in section 2 with details of the derivation described in
appendix A. Our goal was to organize the definitions of the transport anisotropy constants in
a way that would facilitate straightforward comparisons between the experimental data and
microscopic theories. In appendix B, we comment on the relation between our notation and
several other notations which have appeared in the literature. Lithographical engineering of
transport anisotropies due to the relaxation of the lattice-mismatch strain is reported in section 3
for (Ga,Mn)As micro Hall-bars and nanoconstriction device. In section 4, we discuss the other
approach to post-growth strain manipulation exploiting hybrid PZT/(Ga,Mn)As structures.

2. Phenomenological description of the AMR

We consider a thin film geometry and a magnetization vector, EM/| EM | = (cos ψ, sin ψ), in the
plane of the film with its two components defined with respect to the orthogonal crystallographic
basis {[100], [010]}. The resistivity tensor,

ρ̂ =

(
ρ11(cos ψ, sin ψ) ρ12(cos ψ, sin ψ)
ρ21(cos ψ, sin ψ) ρ22(cos ψ, sin ψ)

)
, (1)

written in the same basis describes the longitudinal and transverse resistivities of a pair of Hall
bar devices oriented along the [100]-direction (ρ11 and ρ21) and the [010]-direction (ρ22 and
ρ12). Resistivities of a pair of orthogonal Hall bars tilted by an angle θ from the [100]/[010]
directions are given by R−θ ρ̂Rθ , where

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
is the rotation matrix. Written explicitly, the longitudinal (ρL) and transverse (ρT) resistivities
for the Hall bar rotated by the angle θ from the [100]-direction read

ρL = (cos θ, sin θ) ρ̂
(

cos θ
sin θ

)
,

(2)

ρT = (cos θ, sin θ) ρ̂
(

− sin θ
cos θ

)
.

We first derive expressions for the non-crystalline AMR components [23, 26] which depend
only on the angle ψ − θ between the current (Hall bar orientation) and the magnetization
vector, and which account for the AMR in isotropic (polycrystalline) materials. We expand
the elements of ρ̂ in equation (1) in series of cosn ψ and sinn ψ [25], or equivalently of cos nψ
and sin nψ . The form of equation (2) implies that corresponding expansions of ρL and ρT in
series of cos(nψ + mθ) and sin(nψ + mθ) contain only terms with m = 0,±2. Among those,
the cos 2(ψ − θ) and sin 2(ψ − θ) are the only terms depending solely on ψ − θ . This explains
why the non-crystalline AMR components, which are obtained by truncating equation (1) to

ρ̂ = ρav

(
1 0
0 1

)
+ 2ρavC I

(
−

1
2 + cos2 ψ sin ψ cos ψ

sin ψ cos ψ −
1
2 + sin2 ψ

)
, (3)
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take the simple form 1ρL/ρav ≡ (ρL − ρav)/ρav =CI cos 2(ψ − θ) and ρT/ρav =CI sin 2(ψ − θ)

[23, 26]. Here ρav is the average (with respect to ψ) longitudinal resistivity, and CI is the non-
crystalline AMR amplitude.

All terms in the expansion of equation (2) which depend explicitly on the orientation of
the magnetization vector with respect to the crystallographic axes contribute to the crystalline
AMR [23, 26]. Symmetry considerations can be used to find the form of ρ̂(ψ) in equation (1)
specific to a particular crystal structure. Explicit expressions for ρ̂(ψ) in unperturbed cubic
crystals, and cubic crystals with uniaxial strains along the [110]- and [100]-axes are derived in
appendix A. Here, we write the final expression for ρL and ρT obtained from the particular form
of ρ̂(ψ) and from equation (2). For the cubic lattice, omitting terms with the periodicity in ψ
smaller than 90◦, we obtain,

1ρL

ρav
= CI cos 2(ψ − θ)+ CIC cos(2ψ + 2θ)+ CC cos 4ψ + · · · (4)

ρT

ρav
= CI sin 2(ψ − θ)− CIC sin(2ψ + 2θ)+ · · · . (5)

For the higher order cubic terms, see appendix A. Some terms in this expansion coincide with
or are contained in results presented in earlier works [16, 25, 26] (as explained in appendix B).
While we understand that the reader may be overwhelmed with the various definitions of
anisotropy constants, we stress that the previous definitions are based on power expansions in
terms of cosn ψ in equation (1). This leads to inconvenient expressions, given that experimental
data are usually analyzed in terms of cos nψ . Advantages of the present notation are highlighted
in appendix B.

Additional components emerge in 1ρL/ρav and ρT/ρav for the uniaxially strained lattice
which we denote as1uni

L and1uni
T , respectively. Omitting terms with the periodicity inψ smaller

than 180◦ we obtain,

(±)1uni
L = C s

IU sin 2θ + C s
U sin 2ψ,

(±)1uni
T = C s

IU cos 2θ
(6)

for strain along the in-plane diagonal directions (s = [110] corresponds to ‘+’ and [11̄0] to ‘−’),
and

(±)1uni
L = C s

IU cos 2θ + C s
U cos 2ψ,

(±)1uni
T = −C s

IU sin 2θ + C s
U,T sin 2ψ

(7)

for strain along the in-plane cube edges (s = [100] corresponds to ‘+’ and [010] to ‘−’). For
higher order uniaxial terms see again appendix A.

3. Experiments in lithographically patterned (Ga,Mn)As microdevices

We now proceed with the discussion of AMR measurements in (Ga,Mn)As microdevices
in which strain effects are controlled by lithographically induced lattice relaxation [1]–[3].
A sketch of the first studied device is shown in figure 1(a). The structure consists of four
1µm wide Hall bars and one 40µm wide bar connected in series. The wider bar is aligned along
the [010]-crystallographic direction, the microbars are oriented along the [110]-, [11̄0]-,
[100]- and [010]-axes. The Hall bars are defined by 500 nm wide trenches patterned by e-beam
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Figure 1. (a) Sketch of the first studied device with four microscopic bars in
series together with a macroscopic Hall bar. Angular average of resistivity, ρav,
at 4 T was 8.87, 14.7, 14.4 and 15 m� cm for the [110], [11̄0], [100] and [010]
microbar and 18.3 m� cm for the [010] macrobar. (b) Polar plot of the percentage
change in resistivity (AMR) as a function of the angle between the applied field
of 4 T and the [100]-direction for the micro- and macroscopic bars aligned along
the [010]-axis. Strain relaxation due to patterning leads to a reduction of the
AMR magnitude of about 30%. For better clarity we plot, instead of 1ρL/ρav

defined in the section 2, δρL/ρav ≡ (ρL − ρL,min)/ρav. Here, ρL,min is the minimum
(with respect to ψ) longitudinal resistivity.

lithography and reactive ion etching in a 25 nm thick Ga0.95Mn0.05As epilayer, which was grown
along the [001] crystal axis on a GaAs substrate. The Curie temperature of the as-grown
(Ga,Mn)As is 60 K. A compressive strain in the (Ga,Mn)As epilayer grown on the GaAs
substrate leads to a strong magnetocrystalline anisotropy which forces the magnetization vector
to align parallel with the plane of the magnetic epilayer [6, 7]. The growth strain is partly relaxed
in the microbars, producing an additional, in-plane uniaxial tensile strain in the transverse
direction [1]–[3].

Magnetoresistance traces were measured with the saturation magnetic field applied in the
plane of the device, i.e. in the pure AMR geometry with zero (antisymmetric) Hall signal and
with magnetization vector aligned with the external magnetic field. The sample was rotated by
360◦ with 5◦ steps. Longitudinal resistances of all five Hall-bars were measured simultaneously
with lock-in amplifiers.

In figure 1(b), we show AMR data from magnetization rotation experiments in the
40 and 1µm wide bars aligned along the [010]-direction. Both curves have a minimum for
magnetization oriented parallel to the Hall bar axis and a maximum when magnetization is
rotated by 90◦. Although this is a typical characteristic of the non-crystalline AMR term in
(Ga,Mn)As the large difference between the AMR magnitudes in the two devices points to a
strong contribution of the crystalline AMR coefficient C [010]

U in equation (7), originating from
the strain induced by transverse lattice relaxation in the microbar. We find that the magnitude of
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Figure 2. (a) and (b) AMR curves at B = 4 T for the microscopic bars aligned
along the in-plane cubic and diagonal directions, respectively. The magnitude
of the AMR is about a factor of 3 smaller in the microbars along the diagonal
directions. (c) Temperature dependence of the crystalline AMR coefficients
normalized to the respective values C0 at 4 K (shown in the inset). (d) Polar
plot showing the eighth-order term found in the AMR of the microscopic bars,
with a magnitude of 0.04%.

the coefficient, C [010]
U = 0.77, amounts to about 30% of the magnitude of the total AMR in the

unrelaxed macroscopic bar.
In figures 2(a) and (b), we plot AMR traces for microbars patterned along the [100]/[010]

and [110]/[11̄0]-crystallographic directions. Strikingly, the overall magnitude of the AMR
traces for the [110]/[11̄0]-oriented Hall bars is about a factor of 3 smaller than for the
[100]/[010] bars and appears to have a much stronger relative contribution of the cubic
crystalline term (the term proportional to CC in equation (4)). However, by extracting the 90◦-
periodic AMR components for all microbars, as well as for the macroscopic Hall bar, we
find a consistent value of CC = −0.17 ± 0.01%. This implies that it is rather a suppression
(enhancement) of the uniaxial AMR components for the [110]/[11̄0] ([100]/[010])-oriented
bars which accounts for the difference in AMR traces in figures 2(a) and (b). Since θ = n × 45◦

for the Hall bars studied in figures 1 and 2, and the lattice relaxation induced strains in these
microbars are in the transverse direction, we can rewrite the ψ-dependent uniaxial terms for the
longitudinal AMR in equations (6) and (7) in a compact form,

1uni
L = C s

U cos 2(ψ − θ). (8)

This expression, together with equation (4), implies that the amplitude of the total uniaxial
(180◦-periodic) contribution to the AMR in the [110]/[11̄0] devices (|CI + C [100]/[010]

U + CIC|)
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can indeed differ from that of the [100]/[010] devices (|CI + C [110]/[11̄0]
U − CIC|), provided that

CIC is nonzero and/or C [100]/[010]
U 6= C [110]/[11̄0]

U .
Another observation we make is a broken [100]–[010] symmetry between the two AMR

traces in figure 2(a) and in each of the two traces in figure 2(b). While in the former case this
behavior can be captured by equation (8) taking C [100]

U 6= C [010]
U , the shape of the AMR curves

in figure 2(b) is inconsistent with the form of equation (8). We have attempted to model the
broken [100]–[010] symmetry by introducing a contribution to the C [100]

U coefficient which is
independent of the microbar orientation, i.e. assuming that its origin is distinct from transverse
strains induced by the micropatterning. From the difference between the two AMR curves in
figure 2(a) and from the [11̄0]-bar AMR in figure 2(b), we obtained that this contribution is
0.3%, and from the [110]-bar AMR we obtained 0.1%. A bar-independent contribution to C [100]

U
therefore explains only part of the observed [100]–[010] broken symmetry effects; we attribute
the remaining part to possible material inhomogeneities or non-uniformities and misalignments
in the micropatterning. It would be interesting to compare these conclusions also to ρT where
the same anisotropy constants occur as in the ρL. The growth strain, however, cannot be relaxed
at the contact leads, so that ρT will characterize mostly the unrelaxed portion of the Hall
bar. On the other hand, the path at which ρL is measured, passes mostly through a relaxed
region because the contact leads are very narrow compared to the longitudinal distance between
the two contacts. The two quantities ρL and ρT thus characterize differently strained material in
this case.

Importantly, the above experimental uncertainties have no effect on the main conclusion
of our experiments that the lattice relaxation-induced uniaxial AMR coefficient is larger than
the cubic crystalline component and a significant fraction of the total AMR of the unpatterned
material. By normalizing the value of the transverse strain-induced C [010]

U coefficient and the CC

coefficient to the respective values at 4 K, we can also compare their temperature dependences
within the measured range of temperatures of 4–70 K. Clearly, the CC coefficient decreases
more rapidly with increasing temperature. This recalls the behavior of the magnetocrystalline
anisotropy terms in magnetization, where the uniaxial term decreases in a less pronounced way
than the cubic one, since the former scales roughly with M2, whereas the latter with M4. As a
result of this, the transverse strain-induced term becomes more dominant at higher temperatures,
changing from 31% of the total AMR at 4 K, to 38% at 70 K (not shown)6.

A detailed analysis of the longitudinal resistance measurements in the microbars allows
us to identify higher-order cubic terms (see equation (A.4) in appendix A). By subtracting the
second- and fourth-order terms from AMR data measured on the [010] microbar we find a clear
signature of an eighth-order (45◦-periodic) cubic term with an amplitude of 0.04%, as shown in
figure 2(d). In section 4, we give another example of the unusual high-order AMR terms (and
explain in more detail how these are extracted from the data) which emerge from post-growth-
induced lattice distortion experiments.

Measurements in the Hall bars discussed above demonstrate that (sub)micrometre lithog-
raphy of (Ga,Mn)As materials grown under lattice matching strains inevitably produces strain
relaxation which may be large enough to significantly modify magnetotransport characteristics
of the structure. Lateral micro and nanoconstrictions, utilized in magnetotransport studies of
non-uniformly magnetized systems or as pinning centers for domain wall dynamics studies, are

6 Note that nonzero AMR is still observable at 70 K which is above the Tc of the as-grown material. Possible
reasons are the high-magnetic field (4 T) used and/or partial annealing during the device fabrication processes.
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Figure 3. (a) Two devices consisting of a 4µm wide bar containing a 150 nm
wide and 500 nm long constriction were patterned from the same wafer material
as in figures 1 and 2: one device was oriented along the [100], another along
the [11̄0]. (b) Resistance variations during in-plane magnetic field sweeps
from negative to positive saturation fields applied along the [100] (black) and
[010] (blue) directions, measured in the constriction device patterned along the
[100]-crystallographic axis. Reference resistances R = 13.7 and Rc = 22.0 k�
correspond to B = 4 T. (c,d) AMR measurements in the wider contact (black)
and across the constriction (red) in a rotating saturation field of 4 T for devices
patterned along the [100]-direction (c) and along the [110]-direction (d). Angular
averages of R/Rc are 13.5/21.6 (c), and 31.8/42.3 k� (d). Percentage change
in resistances rather than resistivities are plotted for this non-uniform geometry
device; the distinction is not relevant for the discussion of the relative changes in
the longitudinal magnetoresistance.

an important class of devices for which these effects are highly relevant. In figure 3, we show
data measured in devices consisting of two 4µm wide bars patterned from the same (Ga,Mn)As
wafer as above along the [11̄0] (or [100])-crystallographic direction and connected by a 150 nm
wide and 500 nm long constriction. Magnetic field sweep experiments at a fixed field angle,
plotted in panel (b), illustrate a marked increase in the constriction of the anisotropy field along
the [100]-bar direction at which magnetization rotates from saturation field orientations towards
the easy [100]-axis. Because of the dilute moment nature of the (Ga,Mn)As ferromagnet, shape
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anisotropy plays only a minor role here and the effect is ascribed to strain relaxation and corre-
sponding changes in the magnetocrystalline anisotropy in the constriction.

AMR measurements in a rotating B = 4 T field shown in figures 3(c) and (d) provide
further indication of the presence of strong strain relaxation-induced magnetocrystalline effects
in devices with narrow constrictions. The comparison between AMRs of the wider contacts and
of the constriction shows very similar phenomenology to that of the macroscopic and strain-
relaxed microscopic Hall bars discussed in the first part of this section (compare figure 2 and
figures 3(c) and (d)). We again identify the uniaxial crystalline AMR term in the constriction due
to microfabrication which is of the same sign and similar magnitude as observed in the micro
Hall bars. Consistency is also found when comparing the character of the AMR curves for the
micro Hall-bars and for the constriction devices patterned along the different crystallographic
directions (see figures 2 and 3(c) and (d)).

4. Experiments in (Ga,Mn)As/piezo-transducer hybrid structures

Lithographic patterning of micro and nanostructures in (Ga,Mn)As provides powerful means
for engineering the crystalline AMR components. In this section, we show that further electrical
control of these effects is achieved in hybrid PZT/(Ga,Mn)As structures. A 25 nm thick
Ga0.94Mn0.06As epilayer utilized in the study was grown by low-temperature molecular-beam-
epitaxy on GaAs substrate and buffer layers [4]. A macroscopic Hall bar, fabricated in the
(Ga,Mn)As wafer by optical lithography, and orientated along the [11̄0]-direction, was bonded
to the PZT using a two-component epoxy after thinning the substrate to 150 ± 10µm by
chemical etching. The stressor was slightly misaligned so that a positive/negative voltage
produces a uniaxial tensile/compressive strain at ≈ −10◦ to the [11̄0]-direction. The induced
strain was measured by strain gauges, aligned along the [11̄0]- and [110]-directions, mounted on
a second piece of 150 ± 10µm thick wafer bonded to the PZT. Differential thermal contraction
of GaAs and PZT on cooling to 50 K produces a measured biaxial, in-plane tensile strain at
zero bias of 10−3 and a uniaxial strain estimated to be of the order of ∼10−4 [27]. At 50 K, the
magnitude of the additional strain for a PZT voltage of ±150 V is approximately 2 × 10−4.

Previous measurements [4] of the device identified large changes in the magnetic easy
axis orientation induced by the PZT. Here, we focus on the effects of the stressor on the
magnetotransport coefficients. The AMR measured at 50 K for ±150 V on the transducer is
shown in figure 4(a). The modification of the AMR induced by the strain can be extracted by
subtracting curves at ±150 V (see figure 4(b)). It is expected that only the crystalline terms
are modified; indeed the modification in the longitudinal resistivity ρL is due to the second-
and fourth-order crystalline AMR terms. This is consistent with our previous analysis on the
unstressed Hall bars, where we found that there were second- and fourth-order crystalline terms
representing approximately 10% of the total AMR. There is also a modification of ρT of similar
magnitude. This is predominantly due to the fourth-order term.

To extract the absolute value of the fourth-order term in ρT at each voltage we have
performed the following analysis: starting with the raw ρT data we subtract any offset due
to mixing of ρL into the ρT signal which may occur as a consequence of small inaccuracies
in the Hall bar geometry or small inhomogeneity in the wafer. This is a correction of approx.
0.4% of the ρL signal which should have no significant effect on the subsequent analysis of
fourth-order terms. (The fourth-order components in ρL are typically 0.1%, so the effect on ρT

would be 0.4% × 0.1% = 0.0004%, i.e. negligibly small.) We then remove any unintentional
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Figure 4. (a) The longitudinal (solid curves) and transverse (dashed curves)
AMRs for piezo voltages ±150 V. (b) The differences between the longitudinal
and transverse AMRs for piezo voltages ±150 V. (c) Fourth-order components of
the transverse AMR at piezo voltages ±150 and 0 V (second-order components
were subtracted as described in the text). In all the cases, T = 50 K and the field
of 1 T was rotated in the plane of the (Ga,Mn)As layer. As in figures 1–3, we plot
for better clarity δρL/ρav ≡ (ρL − ρL,min)/ρav and δρT/ρav ≡ (ρT − ρT,min)/ρav

with ρav ≈ 5.3 m� cm. Here ρL(T),min is the minimum (with respect to ψ)
longitudinal (transverse) resistivity.

antisymmetric (Hall) component from ρT by shifting the data by 180◦ and averaging. The
second-order terms are subsequently removed from ρT by shifting the data by 90◦ and averaging.
The result of this procedure is plotted in figure 4(c).

At the piezo voltage of 0 V the fourth-order component is approximately 0.03% (peak
to trough). At +150 V it is further enhanced to approximately 0.1% while at −150 V the
magnitude is reduced to approximately 0.01% which is a value similar to the fourth-order term
observed after carefully re-examining a (Ga,Mn)As wafer without the PZT attached to it [23].
For the present device, measurements of the magnetic anisotropy indicate that the application of
−150 V to the PZT counteracts the uniaxial strain induced by differential thermal contraction
on cooling to return the device close to the unstrained state [4]. The presence of a fourth-
order term in the transverse AMR is allowed under a uniaxial distortion, see equations (A.8)
and (7), but is not expected if only cubic symmetry is present. The positions of maxima
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in figure 4(c) do not comply with equation (A.8) alone and they moreover change with the
magnitude of the strain. We ascribe this observation to the PZT misalignment which implies
that the actual strain has both a [110] and a [100] component. As the strain dependence
of anisotropy constants like C [110]

IU4+ and C [100]
IU4+ may be different, shifts of maxima can occur.

We also observed changes in the longitudinal AMR (not shown) which were comparable to
those in the transverse AMR. Note that both in magnitude and in the position of maxima there
may be differences between the longitudinal and transversal fourth-order components: while the
latter depends on −C [110]

IU4+ + C [110]
IU4−

, see equation (A.8), the longitudinal AMR may change either
via C [110]

IU4+ + C [110]
IU4−

or via CC, see equations (A.7) and (4).
The data presented in figure 4(c) clearly demonstrate that the uniaxial strain produced

by the PZT induces a significant fourth-order term in the transverse AMR, which is usually
considered to be of insignificant magnitude in the unstrained wafer. Note that the small
misalignment of the magnetization with the 1 T applied field has a negligible effect here, as
we checked by considering the magnetic anisotropy constants given in [4]. The analysis thus
demonstrates that by applying voltage on the PZT one can significantly enhance crystalline
AMR components, as compared to the bare (Ga,Mn)As wafer, and efficiently compensate
additional strain effects induced by, e.g. different thermal expansion coefficients in hybrid
multilayer structures.

5. Conclusions

We have demonstrated that besides the previously observed effects on magnetic anisotropies,
post-growth strain engineering can be also used to manipulate efficiently the AMR of
(Ga,Mn)As. Since magnetic anisotropy is a property of the total energy of the system while
AMR also reflects quasiparticle scattering rate characteristics [23] there is no straightforward
link between the two observations. Experiments and phenomenological analysis of the data have
been presented for two distinct approaches to post-growth strain control: we used the transverse
in-plane relaxation of the GaAs/(Ga,Mn)As lattice mismatch strain in lithographically patterned
narrow Hall bars, and an electrically controlled strain was induced using a piezo-transducer. Our
main results include the observation of AMR changes due to strain which can be comparable
in magnitude to the strongest, non-crystalline AMR component in bare (Ga,Mn)As, and we
have also reported previously undetected high-order crystalline AMR terms. Finally, we have
demonstrated that strain-induced effects can play an important role in magnetoresistance
characteristics of (Ga,Mn)As nanoconstrictions.
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Appendix A. Derivation of phenomenological AMR expressions

To derive the appropriate AMR expansions for cubic and uniaxially distorted crystals, we
consider the conductivity tensor in equation (1) with the two Hall bars and magnetization vector
fixed in space and perform the relevant symmetry operations to the underlying crystal. (Note
that the values of ψ and θ may change under the effect of the symmetry operations since
the angles are defined with respect to the crystallographic directions.) The relevant operations
for the cubic crystal are summarized in table A.1; the last operation, the invariance under
ψ → 90◦

−ψ assuming the Hall bars and the crystal fixed, is derived from the microscopic
theoretical expression for the AMR [14]. The general form of equation (1) constrained by these
cubic symmetry considerations reads:

ρ̂ = ρ̂cub =

(
u(cos2 ψ) cos ψ sin ψ v(cos2 ψ)+v(sin2 ψ)

2

cos ψ sin ψ v(sin2 ψ)+v(cos2 ψ)

2 u(sin2 ψ)

)
. (A.1)

Functions u and v can be expanded in the Taylor series of cosn ψ [25] or, equivalently, in
the series of cos nψ . For example, for u in equation (A.1) we obtain,

u(cos2 ψ)= a0 + a2 cos 2ψ + a4 cos 4ψ + · · · (A.2)

and

u(sin2 ψ)= a0 − a2 cos 2ψ + a4 cos 4ψ − · · · . (A.3)

Equations (A.1)–(A.3) together with equation (2) yield, after transforming all products of
goniometric functions and recollecting them into sines and cosines of sums of angles, the
following structure of the longitudinal and transverse AMR expressions:

1ρL

ρav
= CC cos 4ψ + CC8 cos 8ψ + · · ·

+ CI cos(2ψ − 2θ)+ CIC cos(2ψ + 2θ)

+ CI6 cos(6ψ − 2θ)+ CIC6 cos(6ψ + 2θ)+ · · · (A.4)

and
ρT

ρav
= + CI sin(2ψ − 2θ)− CIC sin(2ψ + 2θ)

+ CI6 sin(6ψ − 2θ)− CIC6 sin(6ψ + 2θ)+ · · · . (A.5)

Equations (4) and (5) in section 2 are obtained by keeping all terms in (A.4) and (A.5)
up to 4ψ . Note that there is a simple relationship between the longitudinal and transverse
AMRs, ρT/ρav =

1
2(∂(1ρL/ρav)/∂θ), which is a consequence of the symmetry (ρ̂)i j = (ρ̂) j i

in equation (A.1).

Analogous procedure can be applied to cubic crystals with uniaxial strain along the [110]-
direction; corresponding symmetry operations are listed in table A.2 and ρ̂ in this case reads,

ρ̂ = ρ̂cub +
(

t (cos2 ψ) cos ψ sin ψ 1
2 [w(cos2 ψ)+w(sin2 ψ)]

1
2 [w(cos2 ψ)+w(sin2 ψ)] t (sin2 ψ) cos ψ sin ψ

)
. (A.6)
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Table A.1. Symmetry operations used for a cubic crystal.

Symmetry operation Implied conditions on ρ̂

Symmetry along [010] ρ11(cos ψ, sin ψ)= ρ11(− cos ψ, sin ψ)
Symmetry along [110] ρ11(cos ψ, sin ψ)= ρ22(sin ψ, cos ψ)

ρ12(cos ψ, sin ψ)= ρ21(sin ψ, cos ψ)
Symmetry along [11̄0] ρ11(cos ψ, sin ψ)= ρ22(− sin ψ,− cos ψ)
Rotation by 90◦ ρ12(cos ψ, sin ψ)= −ρ21(− sin ψ, cos ψ)
Invariance under ψ → 90◦

−ψ ρ12(cos ψ, sin ψ)= ρ12(sin ψ, cos ψ)
(fixed crystal)

Table A.2. Symmetry operations used for cubic crystal uniaxially strained
along [110].

Symmetry operation Implied conditions on ρ̂

Symmetry along [110] ρ11(cos ψ, sin ψ)= ρ22(sin ψ, cos ψ)
ρ12(cos ψ, sin ψ)= ρ21(sin ψ, cos ψ)

Symmetry along [11̄0] ρ11(cos ψ, sin ψ)= ρ22(− sin ψ,− cos ψ)
ρ12(cos ψ, sin ψ)= ρ21(− sin ψ,− cos ψ)

Invariance under ψ → 90◦
−ψ ρ12(cos ψ, sin ψ)= ρ12(sin ψ, cos ψ)

(fixed crystal)

Equation (A.6) yields the following uniaxial AMR terms:

1ρL

ρav
= C [110]

U sin 2ψ + C [110]
U6 sin 6ψ + C [110]

U10 sin 10ψ + · · ·

+ C [110]
IU sin 2θ + C [110]

IU4+ sin(4ψ − 2θ)

+ C [110]
IU4−

sin(4ψ + 2θ)+ C [110]
IU8+ sin(8ψ − 2θ)

+ C [110]
IU8−

sin(8ψ + 2θ)+ · · · (A.7)

and
ρT

ρav
= + C [110]

IU cos 2θ − C [110]
IU4+ cos(4ψ − 2θ)

+ C [110]
IU4−

cos(4ψ + 2θ)− C [110]
IU8+ cos(8ψ − 2θ)

+ C [110]
IU8−

cos(8ψ + 2θ)+ · · · . (A.8)

The terms which contain at most 2ψ reproduce equation (6).
Cubic crystals with uniaxial strain along the [100]-axis are described by (see table A.3),

ρ̂ =

(
u(cos2 ψ)+1u(cos2 ψ) sin ψ cos ψ[v(cos2 ψ)+1v(cos2 ψ)]

sin ψ cos ψ[v(sin2 ψ)−1v(sin2 ψ)] u(sin2 ψ)−1u(sin2 ψ)

)
. (A.9)

New Journal of Physics 10 (2008) 065003 (http://www.njp.org/)

http://www.njp.org/


14

Table A.3. Symmetry operations used for a cubic crystal uniaxially strained
along [100].

Symmetry operation Implied conditions on ρ̂

Symmetry along [100] ρ11(cos ψ, sin ψ)= ρ11(cos ψ,− sin ψ)
ρ22(cos ψ, sin ψ)= ρ22(cos ψ,− sin ψ)
ρ12(cos ψ, sin ψ)= −ρ12(cos ψ,− sin ψ)
ρ21(cos ψ, sin ψ)= −ρ21(cos ψ,− sin ψ)

Symmetry along [010] ρ11(cos ψ, sin ψ)= ρ11(− cos ψ, sin ψ)
ρ22(cos ψ, sin ψ)= ρ22(− cos ψ, sin ψ)
ρ12(cos ψ, sin ψ)= −ρ12(− cos ψ, sin ψ)
ρ21(cos ψ, sin ψ)= −ρ21(− cos ψ, sin ψ)

Note that (ρ̂)i j 6= (ρ̂) j i in this case. Equation (A.9) yields the following uniaxial AMR terms:

1ρL

ρav
= C [100]

U cos 2ψ + C [100]
U6 cos 6ψ + C [100]

U10 cos 10ψ + · · ·

+ C [100]
IU cos 2θ + C [100]

IU4+ cos(4ψ − 2θ)

+ C [100]
IU4−

cos(4ψ + 2θ)+ C [100]
IU8+ cos(8ψ − 2θ)

+ C [100]
IU8−

cos(8ψ + 2θ)+ · · · , (A.10)

and

ρT

ρav
= + C [100]

U,T sin 2ψ + C [100]
U4,T sin 4ψ + C [100]

U6,T sin 6ψ + · · ·

− C [100]
IU sin 2θ + C [100]

IU4+ sin(4ψ − 2θ)

− C [100]
IU4−

sin(4ψ + 2θ)+ C [100]
IU8+ sin(8ψ − 2θ)

− C [100]
IU8−

sin(8ψ + 2θ)+ · · · . (A.11)

Again, the lowest order terms reproduce equation (7).

Appendix B. Definitions of transport anisotropy constants

The first impression one probably gets from researching the literature on AMR is that every
publication uses its own definition of anisotropy constants. This is naturally not completely
true, nevertheless, linking results between different publications indeed requires some effort. All
works mentioned below, including the present one, are based or expand either on the analysis
of Döring [25] or Birss [28].

Generally, the resistivity tensor of equation (1) should be a 3 × 3 matrix and this
introduces, compared to results in appendix A, new anisotropy constants and also a second angle
determining the direction of magnetization. If this is the starting point, expressions for AMR on
an arbitrarily oriented surface can be derived. In our work, we focused on (001) surfaces, and
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obtained simple formulae, as for instance equations (4) and (5), however, at the cost of some
loss of generality. In simple terms, not all constants which appear in literature in expansions of
the 3 × 3 resistivity tensor can be recovered.

1. The most common symbols are ρ‖ and ρ⊥, the resistivities for magnetization-oriented
parallel and perpendicular to current (used e.g. in [17, 20]). It holds

CI =
ρ‖ − ρ⊥

ρ‖ + ρ⊥

,

for polycrystalline (or isotropic) system, where this single constant fully describes all
possible anisotropies (cf equation (3)). We point out that apparently different values of
ρ‖ − ρ⊥ derived from the longitudinal and transverse resistivities as the coefficient in front
of the 180◦-periodic component in [17], are just a simple consequence of lowering the
isotropic symmetry: they correspond to CI,C 6= 0 as can be seen in equations (4) and (5).

2. Limmer et al [16] derive the most general form of the 3 × 3 resistivity tensor up to
terms quadratic in direction cosines of the magnetization, i.e. cos2 ψ in the case of (001)
surfaces and equation (1). They consider a cubic crystal with a tetragonal lattice distortion
along [001], aiming at a description of (Ga,Mn)As layers subject to strain due to the
lattice mismatch with the substrate. The link between constants A, B,C , and D defined
in equation (3) of [16] (pure cubic system) and our equations (4) and (5) is

CI =
B + C

4A
, CI,C =

B − C

4A
.

The constant D is completely decoupled from AMR within (001) layers.

The uniaxial strain discussed in our work is different from the tetragonal lattice
distortion considered in [16]. However, C [100]

U in our equation (7) corresponds to 2b1/A
in equation (A.8) of [16] if b1 = b2 and axes [100] and [001] are interchanged.

3. McGuire and Potter [26] give expansions of the 3 × 3 resistivity tensor for cubic system up
to the fourth power of magnetization direction cosines. Their constants C ′

0 through C ′

5 map
to equations (4) and (5) in the following way:

CI =
C ′

1 + C ′

4 + C ′

2

4C ′

0

, CI,C =
C ′

1 − C ′

4 + C ′

2

4C ′

0

, CC =
C ′

2

8C ′

0

.

Again, C ′

3 and C ′

5 cannot be determined from AMR in (001) layers.

4. Döring [25] performs an analysis equivalent to the later work of McGuire and Potter [26]
but using slightly different constants k1 through k5. The relationship to equations (4)
and (5) is

CI =
k1 + k2 + k4

4
, CI,C =

k1 − k2 + k4

4
, CC =

k4 − 3k3

24
.

The main results of this work are reviewed by van Gorkom et al [29] who study epitaxial

iron films and use the same definition of transport anisotropy constants.

Finally, we point out that all symmetry analyses, the present one and those referenced
above, start with writing the AMR as a polynomial in direction cosines of the magnetization
and of the current. It is, however, reasonable to re-express such formulae in terms of cosines
of multiples of an angle at the end because the natural way of analyzing both experimental
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and microscopically calculated data is to split the AMR into its Fourier components, e.g. as
suggested by equation (4). The functional spaces spanned by B1 = {1, cos2 ψ, cos4 ψ, . . .} and
B2 = {1, cos 2ψ, cos 4ψ, . . .} are of course identical, but the recalculation of coefficients of
some particular AMR data with respect to the basis B2 to coefficients with respect to the
non-orthogonal basis B1 depends on how many elements we keep in the basis. In other words,
if we at some point decide to study higher order terms such as cos 8ψ shown in figure 2(d) and
define the AMR coefficients with respect to the basis B1, then also the coefficients in front of
the ‘old’ terms 1, cos2ψ and cos4ψ have to be recalculated. We therefore prefer the definition
used in equation (4).
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