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Abstract. We investigate the anisotropy of magnetic reversal and current-
driven domain wall motion in annealed Ga0.95Mn0.05As thin films and Hall bar
devices with perpendicular magnetic anisotropy. Hall bars with current direction
along the [110] and [11̄0] crystallographic axes are studied. The [110] device
shows larger coercive field than the [11̄0] device. Strong anisotropy is observed
during magnetic reversal between [110]- and [11̄0]-directions. For both devices,
the critical current required to depin a domain wall from an etch step is found
to be strongly temperature-dependent, and can be described by a power-law
dependence on the magnetization (M) with an exponent of 2.6 ± 0.3. The
domain wall motion is strongly influenced by the presence of local pinning
centres.
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1. Introduction

(Ga,Mn)As, a model ferromagnetic semiconductor [1], has attracted much attention for
fundamental physics and for its potential applications in spintronics [2, 3]. Its magnetic
anisotropy is dominated by magnetocrystalline effects which are dependent on carrier density
and strain, in good agreement with theory [2]. (Ga,Mn)As epilayers grown on a relaxed (001)
(In,Ga)As buffer layer experience a tensile strain due to the difference in lattice constant in each
layer. Under these conditions the magnetic easy axis is perpendicular to the plane [4]. Stripe
domain patterns in (Ga,Mn)As with perpendicular magnetic anisotropy have been observed
previously using scanning Hall probe microscopy [5] and polar magneto-optical Kerr effect
microscopy (PMOKM) [6]–[9]. The stripe domains are formed with a typical width of a few
microns at low temperatures [5], and may be influenced by low temperature annealing [6, 7, 9].

It has become clear that implementation of spintronics for memory applications requires
the ability to manipulate the magnetic state of a material through the application of electric
fields. Manipulation of magnetic domain walls using a spin-polarized current offers a key route
to this. Current-driven domain wall motion in both ferromagnetic metals and semiconductors
has been demonstrated, but the mechanism is still under debate [10]–[12]. The critical
current density for domain wall motion is predicted to be proportional to the saturation
magnetization [13, 14], which is typically two orders of magnitude smaller in (Ga,Mn)As than
that in transition metal ferromagnets. The heating effect and the Oersted field produced by the
electrical current is correspondingly lower, so that (Ga,Mn)As is one of the best candidates for
understanding current-driven domain wall motion.

Previous studies of current-driven domain wall motion in (Ga,Mn)As obtained critical
current densities of around 105 A cm−2, which is much smaller than typically reported values
for metal films. These studies were performed on films of thickness around 25 nm, with either
in-plane [15] or perpendicular-to-plane easy magnetic axes [16]. In contrast, for studies of
thicker (150 nm) films with in-plane magnetic easy axes, no evidence of current-driven domain
wall motion was observed [17].

In the present work, we concentrate on the domain images in magnetic reversal and
current-driven domain wall motion in (Ga,Mn)As with perpendicular magnetic anisotropy.
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In section 2, we study the magnetic domain patterns and domain wall motion under external
magnetic field in the (Ga,Mn)As thin film and in patterned Hall bar devices with current oriented
along [110] and [11̄0] crystalline axes, using PMOKM. In section 3, we combine PMOKM
and magnetotransport measurements to study the current-driven domain wall motion in the
(Ga,Mn)As Hall bar devices. Section 4 gives a summary of the key results of the work.

2. Magnetic images during magnetization reversal

The 25 nm thick (Ga0.95Mn0.05)As thin film was grown on a semi-insulating GaAs (001)
substrate by molecular beam epitaxy using a modified Varian GEN-II system [18]. A 100 nm
thick GaAs buffer layer at 580 ◦C, followed by a 580 nm In0.15Ga0.85As layer at 500 ◦C, were
deposited prior to the growth of the (Ga,Mn)As layer at 255 ◦C. Post-growth annealing was
performed in air at 190 ◦C for 120 h, which is an established procedure for increasing the
Curie temperature (TC) of (Ga,Mn)As thin films [19]. The resulting film has Curie temperature
137 ± 2 K, and shows very square magnetic hysteresis loops for the whole temperature range,
demonstrating that the magnetic easy axis is perpendicular to the plane up to TC. The PMOKM
images were obtained using a commercial system with a high pressure Hg lamp and a high
resolution CCD camera with time resolution up to 30 ms, giving a spatial resolution of 1 µm
with image as large as 150 µm × 150 µm.

2.1. Magnetization reversal in thin film

The Kerr rotation angle, averaged over the image area, is proportional to the component of
the magnetization pointing perpendicular to the plane of the film. Figures 1(a)–(f) show
successive PMOKM snapshots of magnetic reversal under external magnetic field at T = 90 K
in the annealed (Ga,Mn)As thin film. Initially, the film is saturated with a negative magnetic field
of −300 Oe, which is much larger than the coercive field. The field is then swept to +27.5 Oe,
just less than the coercive field. PMOKM images are then captured at a rate of 15 frames s−1.
The time-resolved domain images captured during the nucleation and propagation of domain
walls are shown in figures 1(a)–(f). These images reveal that the domain walls are nucleated
at the side of the films and align along the [11̄0]-direction, propagating rapidly along the
[110]-axis between pinning sites, until the magnetization is almost fully reversed with only
a few unreversed stripe domains remaining. Similar images of magnetization reversal are
observed over the whole temperature range up to TC. The width of the unreversed stripe
domains is a few microns, which is much wider than the typical domain wall width (∼15 nm) in
(Ga,Mn)As [20]. The pinning sites are strongly related with surface undulations formed during
the growth [21]. The anisotropic magnetization reversal process is most likely attributed to the
anisotropy of residual pinning sites after annealing rather than the in-plane magnetocrystalline
anisotropy [22].

2.2. Magnetic reversal in fabricated Hall bars

4 µm wide modified Hall bar devices as shown in figure 2, with current channel along either
the [110] or [11̄0] crystalline axis, were fabricated by electron beam lithography. The current
channel is defined by etching narrow trenches in the layer, with 200 nm openings to the voltage
contacts. The length between neighbouring arms along the bar is 20 µm and the total length of
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Figure 1. Successive PMOKM snapshots of the magnetic domain pattern during
the magnetization reversal at 90 K for the annealed (Ga,Mn)As thin film at
H = 23.7 Oe, after (a) 5 s, (b) 5.6 s, (c) 6.1 s, (d) 7.3 s, (e) 9.23 s and (f) 9.37 s,
respectively. The arrow in (f) indicates a persistent residual strip domain.

20 µm

4 µm

Figure 2. Optical image of a fabricated (Ga,Mn)As Hall bar device. The top
∼10 nm layer of the two marked rectangles have been etched away.

the bar is 120 µm. A 10–15 nm surface layer has been etched away at both ends, as marked in
figure 2. The devices were annealed in air at 190 ◦C for 24 h. The Curie temperature for the [110]
and [11̄0] devices are determined by using PMOKM to be 120 ± 2 and 122 ± 2 K, respectively.
The small difference in TC is due to small differences in growth parameters across the wafer. The
Curie temperature of the devices is lower than that of the annealed film studied in section 2.1
due to the shorter anneal time.
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Figure 3. (a)–(d) PMOKM domain images during magnetization reversal of
the [110]-oriented device at 102 K; (e) magnetic hysteresis loop for the device,
with the points marked A–D corresponding to the domain configurations (a)–(d),
respectively.
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Figure 4. (a)–(c) PMOKM magnetic images of the magnetization reversal of
the [11̄0]-oriented device at 102 K; (d) magnetic hysteresis loop for the device,
with the points marked A–C corresponding to the domain configurations (a)–(c),
respectively.

The magnetic hysteresis loops are measured using PMOKM for both devices at different
temperatures. During the magnetization reversal, clear domain wall propagation along the bar
is observed in the [110]-oriented device. The device is first saturated in positive field, and then
the field is swept to negative values at a rate of 1 Oe s−1. The magnetic configuration during
the domain wall propagation is shown in figures 3(a)–(d), which corresponds to points A–D
marked in the hysteresis loop in figure 3(e). The domain walls can propagate from both ends
of the bar, which is consistent with the magnetic reversal results for the thin film. States with
pinned magnetic domain walls are observed in figures 3(b) and (c).

A similar experiment is performed for the [11̄0]-oriented device. The magnetic
configuration during the magnetic reversal is shown in figures 4(a)–(c). No domain wall
propagation is observed in this case, even with time resolution down to 30 ms. The magnetic
images are quite homogeneous. For figures 4(a) and (c), the magnetization is fully perpendicular
to the plane (up and down, respectively), whereas the magnetization in figure 4(b) is close to
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Figure 5. Temperature dependence of the coercive field for the [110]- and
[11̄0]-oriented devices.

zero. The latter may be because the magnetization reversal occurs on a faster timescale than
the image integration time of the PMOKM measurement. This indicates that the magnetic field-
driven domain wall propagation across the Hall bar is much faster than our time resolution.

The temperature dependence of the coercive field (HC) obtained by PMOKM for both
devices is shown in figure 5. Below 117 K, HC for the [11̄0]-oriented device is much smaller
than for the [110]-oriented device. The results are consistent with the magnetic reversal images
in the unpatterned film (figure 1) which show that the domain wall propagates along the
[110]-direction. The coercive field for the [11̄0]-oriented device linearly decreases with
increasing temperature, whereas the decrease is nonlinear for the [110]-oriented device.

3. Current-driven domain wall motion

In this section, we discuss current-driven domain wall motion in the [110]- and [11̄0]-oriented
devices. Due to the different coercive field for the etched and non-etched parts of the devices,
we can initialize a magnetic configuration with domain walls formed at both interfaces between
etched and non-etched regions, using an external magnetic field. We then determine the critical
current JC required to move the domain wall from the interface. Irrespective of the relationship
between the applied current direction and the domain wall direction, we expect to observe
domain wall motion within the PMOKM image window.

3.1. Dc current-driven domain wall motion

For the current-driven domain wall studies, we initially form domain walls at both interfaces
using the external magnetic field, and then reduce the field to zero and also screen the light
in order to prevent the complication of photoexcited effects. Increasing the dc current from
zero, we monitor the Hall resistance for both the A and B Hall crosses simultaneously (see
figure 6). Local reversal of the magnetization is detected as a large change in the Hall signal,
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Figure 6. (a)–(c) Dc current-driven domain wall motion with positive electric
current: (a) the initial magnetic configuration with domain walls at each
interface; (b) the in situ monitored Hall resistance at crosses A and B during
application of positive dc current; (c) magnetic configuration after applying the
positive current shown in (b). (d)–(f) Dc current driven domain wall motion with
negative electric current: (d) initial magnetic configuration; (e) in situ monitored
Hall resistance at crosses A and B during application of negative dc current;
(f) magnetic configuration after applying the negative current shown in (e). The
white arrows in (a), (c), (d) and (f) indicate the electrical current direction.

due to the anomalous Hall effect. When any abrupt change of the Hall resistance from either
pair of contacts is observed, the dc current is switched to zero, and the magnetic configuration
is imaged using PMOKM.

In order to distinguish spin-transfer-induced domain wall motion from Joule heating or
Oersted field-induced effects, we investigate four different configurations of magnetization and
applied current direction, illustrated in figures 6 and 7:

(i) Initially the magnetization is saturated with a positive magnetic field of 1000 Oe, which is
much higher than the coercive field. The field is then swept to −105 Oe, which switches
the etched contact regions but not the bar itself, with domain walls formed at each
interface. The magnetic field is then reduced to zero. The image of this initial magnetic
configuration for the [110]-oriented device at T = 102 K is shown in figure 6(a). Note that
the magnetization in some of the voltage leads has also switched, which is ascribed to
the presence of random nucleation sites in these large regions. A positive electric current
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Figure 7. Dc current-driven domain wall motion as in figure 6, but with opposite
initial magnetic configuration: (a) the initial magnetic configuration with domain
walls at each interface; (b) the in situ monitored Hall resistance at crosses A
and B during application of positive dc current; (c) magnetic configuration after
applying the positive current shown in (b); (d) initial magnetic configuration;
(e) in situ monitored Hall resistance at crosses A and B during application of
negative dc current; (f) magnetic configuration after applying the negative current
shown in (e). The white arrows in (a), (c), (d) and (f) indicate the electrical
current direction.

is then applied from zero at a rate of 2 × 103 A cm−2 s−1. The monitored Hall resistance
at crosses A and B versus increasing current is shown in figure 6(b). A sharp change of
the Hall resistance at cross B is observed when the current reaches ∼5.6 × 105 A cm−2.
We define this onset point of rapidly changing anomalous Hall resistance as the critical
current density JC for dc current-driven domain wall motion. The magnetic configuration
image after applying the positive dc current, shown in figure 6(c), indicates that the left
side domain wall has propagated around 15 µm along the channel towards the right side.
Therefore, the direction of motion of the domain wall is opposite to the electrical current
direction. With one domain wall in the middle and the other one at the other end of the
channel such as figure 6(c), both domain walls can be pushed backwards with opposite
(negative) electrical current applied. The other end domain wall starts to move at lower
current.

(ii) The magnetization configuration is initialized as before (figure 6(d)), but this time a
negative dc current is applied from zero at a rate of −2 × 103 A cm−2 s−1. The resulting Hall
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resistance versus increasing negative current for crosses A and B is shown in figure 6(e).
A sharp change of the Hall resistance of cross A is observed. The magnetic configuration
image after applying the negative dc current (figure 6(f)) shows that the right domain wall
has propagated around 30 µm along the stripe towards the left side. Therefore, the domain
wall moves in the opposite direction to the current as before, with similar JC.

(iii) and (iv) The magnetization is saturated with a negative magnetic field of −1000 Oe, before
the field is swept to +105 Oe and then zero. This yields the opposite magnetic configuration
to figures 6(a) and (d), as shown in figures 7(a) and (d). The Hall resistance is shown against
positive and negative dc currents in figures 7(b) and (e), respectively, with the current swept
from zero at a rate of ±2 × 103 A cm−2 s−1 as before. The resulting magnetic configuration
images after the critical current is reached are shown in figures 7(c) and (f). In both cases,
the domain wall motion is again opposite to the current direction.

If Joule heating is the source of the domain wall motion, the domain wall motion direction
should be independent of the applied current direction. If the Oersted field is the origin of the
current-driven domain wall motion, the domain wall motion direction should be dependent on
the initial magnetic configuration. The above reproducible observations therefore rule out the
Oersted field or Joule heating as the origin of the current-driven domain wall motion. Similar
current-induced domain wall motion is observed for both the [110]- and [11̄0]-oriented devices.
Our results demonstrate that the spin-transfer torque is indeed the origin of the current-driven
domain wall motion in the present devices. The sign and magnitude of the critical current
for domain wall motion is in agreement with previous studies of (Ga,Mn)As devices with
perpendicular magnetic anisotropy [12, 16].

3.2. Single current pulse-driven domain wall motion

In order to minimize the heating effect associated with the dc current, we also investigate domain
wall motion induced by single current pulses of width 1 ms. We keep the same initial magnetic
configuration as in the dc current measurements and image the initial state. The light is screened
while the current pulse is applied. Then the final magnetic configuration is imaged after applying
a current pulse of varying current density. The critical current density is then defined as the value
at which domain motion occurs, as identified by a difference between initial and final magnetic
configurations.

3.3. Critical current for domain wall motion

Before correcting the device temperature for current-induced heating effects, the critical
current density obtained from dc current measurements is lower than that of pulsed current
measurements. The difference of JC obtained by these two methods becomes larger as the
device temperature is reduced. This is due to the larger heating effect in the dc measurements.
In order to take into account the heating effect of the electric current, we use the longitudinal
resistance of the device to calibrate the device temperature. The longitudinal resistance
during the current-driven domain wall motion is complicated by the presence of anisotropic
magnetoresistance and anomalous Hall resistance. Therefore, we cannot directly use the
longitudinal resistance obtained from dc measurements and single current pulse measurements
to calibrate the device temperature. Instead, the calibration was performed under an external
magnetic field of 300 Oe. This ensures that the magnetic configuration is unchanged even with
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Figure 8. (a) Temperature dependence of the critical current density obtained
from dc measurements (solid symbols) and single pulse measurements (open
symbols) for the two devices, with lines to guide the eye. (b) Temperature
dependence of the normalized magnetization for the two devices obtained
by PMOKM, with lines showing the Brillouin functions with S = 5/2 for
Curie temperatures of 120 and 122 K. (c) Magnetization dependence of the
critical current obtained from dc measurements (solid symbols) and single pulse
measurements (open symbols) for the two devices, with the line showing the
power law fit.

large dc current applied. We compare the longitudinal resistance for the device at low current
density J = 8 × 103 A cm−2 with the longitudinal resistance obtained for dc currents applied
from zero at a rate of ±2 × 103 A cm−2 s−1 and for single current pulses. The heating effect from
the dc current (at critical current) and pulsed current is calibrated separately for both devices as
a function of temperature.

The corrected temperature dependence of the critical current density for current-driven
domain wall motion for the [110]- and [11̄0]-oriented devices is shown in figure 8(a). After
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Figure 9. PMOKM images for the [110]-oriented device at 102 K, showing the
domain wall position and profile after applying single current pulses of current
density (a) 6.0 × 105, (b) 6.2 × 105, (c) 6.75 × 105 and (d) 8.0 × 105 A cm−2.

(a)

(b)

(c)

(d)

(e)

Figure 10. PMOKM images for the [11̄0]-oriented device at 107 K, showing
the domain wall position and profile after applying single current pulses of
current density (a) 5.2 × 105, (b) 5.4 × 105, (c) 5.6 × 105, (d) 5.8 × 105 and
(e) 6 × 105 A cm−2.

calibration of the device temperature, the critical currents obtained from dc current and pulsed
current measurements are consistent with one another. The critical current decreases with
increasing temperature for both devices, due to the weakening of the magnetization and
magnetic anisotropy as the Curie temperature is approached. Between 105 and 116 K, significant
differences are observed between the critical current obtained for the different oriented
devices. We attribute this to the small difference in TC and rapid change of the magnetization
close to TC.

The temperature dependence of the saturation magnetization obtained from PMOKM for
both devices is shown in figure 8(b), which is in good agreement with the Brillouin function for a
ferromagnet with S = 5/2, with TC = 120 and 122 K, respectively. Using the Brillouin function
to obtain the normalized magnetization, the critical current density JC versus magnetization for
both devices is shown in a log–log plot in figure 8(c). The critical current density follows the
same dependence on the magnetization for both devices within the experimental error, which
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Figure 11. Snapshots of PMOKM movie of the [110]-oriented device obtained
while increasing the dc current density at 100 K from 4.5 × 105 A cm−2 at a
rate of 2 × 103 A cm−2 s−1, to (a) 5.02 × 105, (b) 5.03 × 105, (c) 5.05 × 105,
(d) 6.57 × 105, (e) 6.58 × 105 and (f) 7.00 × 105 A cm−2. The white arrow
indicates the current direction. See stacks.iop.org/NJP/10/085007/mmedia (the
current density is shown at the top-left with units 105 A cm−2).

can be described by a power law with JC ∝ M2.6±0.3. Therefore, the critical current decreases
more rapidly with decreasing M than the linear relationship given by existing theories [14]. This
may be due to a strong magnetization dependence of the domain wall pinning at the etch step.

3.4. Domain wall displacement in (Ga,Mn)As

We next investigate the domain wall displacement induced by a single current pulse of fixed
width 1 ms and varying amplitude. Domain wall displacements induced by single current pulses
with varying density are shown in figure 9 for the [110]-oriented device and figure 10 for
the [11̄0]-oriented device. The device temperatures during these measurements are 102 and
107 K, respectively. For the [110]-oriented device, the magnetic domain wall remains pinned
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Figure 12. Domain wall displacement after application of a single current
of varying density, for the [110]- and [11̄0]-oriented devices at different
temperatures.

at the interface of the etching step for pulsed current density J = 6.0 × 105 A cm−2, as shown
in figure 9(a). At J = 6.2 × 105 A cm−2, domain wall motion occurs, as the domain wall has
moved away from the interface in the opposite direction to the current pulse (figure 9(b)). The
domain wall now has a wedge-like profile, which may be attributable to the non-uniformity of
the current distribution around the wall [16, 23], and the Oersted field produced by the current.
For J = 6.75 × 105 A cm−2, the domain wall moves further from the interface, and the wedge-
like distortion of the wall increases (figure 9(c)). However, for J = 8 × 105 A cm−2, we observe
a sharp domain wall aligned perpendicular to the current direction (figure 9(d)). Since neither the
Oersted field nor the non-uniformity of the current distribution should decrease with increasing
current, we attribute this to a strong pinning line along the [11̄0]-axis, where a much larger
critical current is required to depin the domain wall. In contrast, for the [11̄0]-oriented device,
with increasing current density the domain wall becomes monotonically more distorted as it
progresses along the bar (figures 10(a)–(e)), in agreement with previous findings [16, 23].

The presence of strong pinning lines along the [11̄0]-axis is further evidenced by
figure 11 and the accompanying movie, which shows PMOKM images taken at 100 K for the
[110]-oriented device, during ramping the dc current from 4.5 × 105 A cm−2 to 7.0 ×

105 A cm−2 at a rate of ∼2 × 103 A cm−2 s−1. Initially, the domain wall is formed at the etch
step using the external magnetic field, which is then reduced to zero as the current is applied.
In figures 11(b) and (c), the wedge domain wall profile is observed. In figure 11(d), the domain
wall is pinned along the [11̄0]-axis. The domain wall remains at this pinning site as the current
density is further increased, until J reaches 6.58 × 105 A cm−2, where the domain wall moves
rapidly along the bar until it reaches another pinning site (figure 11(e)). A large critical current
is required to release the domain wall from the pinning sites shown in figures 11(c) and (e).

The dependence of the domain wall position on the pulsed current density, for the two
devices at different temperatures, is shown in figure 12. For the [110]-oriented device, the
domain wall shows a step-like displacement as the current density is increased, as it moves
rapidly between a series broad plateaus representing the strong pinning lines aligned along
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the [11̄0]-axis. The slope is much steeper for the [11̄0]-oriented device and the plateau regions
are much narrower, indicating that the pinning sites preventing domain wall motion along
the [11̄0]-axis are relatively weaker. The strong domain wall pinning in our devices prevents
determination of the domain wall velocity in response to a current pulse, as the domain wall
does not move smoothly during the pulse duration, and the domain wall displacement is
mainly determined by the current density rather than the pulse width.

4. Conclusions

Using PMOKM and electrical transport measurements, we have investigated domain wall
propagation in Hall bars and thin films of tensile strained (Ga,Mn)As with perpendicular
magnetic anisotropy, in response to applied magnetic fields and spin polarized electric currents.
The anisotropy of domain wall motion and domain wall pinning sites observed for (Ga,Mn)As
films grown on strain-relaxed (In,Ga)As [7, 9] leads to a number of important differences in the
behaviour of Hall bars with current channel along the [110] and [11̄0] in-plane crystalline axes.
A much smaller coercive field is observed during magnetization reversal for the [110]-oriented
device compared with the [11̄0]-oriented device. In addition, strong pinning lines are observed
in the [110]-oriented device, resulting in domain walls oriented perpendicular to the current
direction, with large associated critical currents. Therefore, the domain wall displacement
induced by a pulsed current in these devices is mainly determined by the current density, rather
than the width of the pulse. However, for a domain wall trapped at an etch step, similar critical
currents are obtained for the [110]- and [11̄0]-oriented devices and a power-law dependence
is observed between the critical current and the temperature-dependent magnetization,
given by JC ∝ M2.6±0.3.
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